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Abstract Cohesive zone traction-separation relations,
and the related phenomenological parameters, for
steady-state ductile plate tearing, are strongly tied to
the micro-mechanics governing the void nucleation
and growth process leading to localized deformation
and micro-crack formation. The effects of such local
variations on the damage evolution and cohesive zone
parameters, respectively, are brought out in this study.
A 2D plane strain model setup, first considered in
Nielsen and Hutchinson (Int J Impact Eng 48:15–23
(2012)], is adopted, but here by discretely modeling a
finite number of finite-size void nucleation sites dis-
tributed randomly in the plate material. It is found that
the heterogeneous material conditions, resulting from
the nucleation process, strongly affect the localization
of damage and fracture, which influence the cohesive
energy. By considering a number of realizations of the
random distribution for each material configuration,
it is concluded that: (i) the peak force in the cohe-
sive traction-separation relation is, essentially, unaf-
fected by the heterogeneity coming into play through
the damage-related microstructure, while (ii) the cohe-
sive energy decreases when either increasing the num-
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ber or the size of the nucleation sites. The cohesive
energy is found to be in the range of those previously
reported for homogeneous materials, but a direct com-
parison should bemadewith caution. The results imply
that care should be taken if the actual material config-
uration diverges from a homogeneous microstructure
such aswhen considering very thin plates and for plates
with a few void nucleation sites.

Keywords Ductile failure · Gurson model · Micro-
mechanics · Size effect · Finite element method

1 Introduction

A homogenized continuum finite element model must
be approached with care when imperfections in a mate-
rial have a significant influence on the response of the
structure. The heterogeneity originating from the dis-
crete events of void nucleation and growth to coales-
cence is no exception to this. In a recent study, Srivas-
tava et al. (2017) showed that discrete void nucleation
events can alter the crack growth path in ductile metals.
They engineered the damage-related microstructure of
a metal plate, within a micro-mechanics based numeri-
cal framework, and obtained amuch-improved fracture
toughness of the engineered material by tailoring the
crack path (see a related study in Osovski et al. 2019).
Srivastava et al. (2017) exploited the fact that the duc-
tile crack tip follows the path where localization is the
easiest (i.e., requiring the least amount of energy). A
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similar approach to increasing the fracture toughness
forAl/NiTi compositeswas taken byZhao et al. (2019),
where a local pre-stress state was deliberately intro-
duced near the inclusions within the matrix to divert
the propagating tearing crack. This interaction between
nucleation sites is rarely dealt with, and the local (at
times intense) variation in stress/strain is homogenized
by adopting a continuum framework such as the classi-
calGursonmodel (Gurson 1977;Gologanu et al. 1997).
Nonetheless, the class ofGurson typemodels facilitates
a micro-mechanics based approach to link the under-
lying damage event to the failure of a structure on the
engineering scale.

In recent years, cohesive traction-separation rela-
tions suited for ductile plate tearing have been based
on the predictions of the Gurson model by homoge-
nizing the material. These phenomenological models
have further been used to predict the response of struc-
tures on the engineering scale (seeWoelke et al. 2015).
In a first study, Nielsen and Hutchinson (2012) consid-
ered amode I crack propagating under steady-state duc-
tile plate tearing and developed a simplified 2D plane
strain framework that allows the key parameters for the
cohesive zone relation to be extracted. The cohesive
traction-separation relation must engage at peak trac-
tion, related to the Considère condition when the plate
cross-section starts to thin and the post-localization
has to be accounted for through the energy going into
the traction-separation relation. The appearance of the
traction-separation relation can, in practice, be approx-
imated by a tri-linear relation with an initial slope of
nearly infinite stiffness. Then, a subsequent nearly flat
part connects the peak traction to a point identified
as the onset of secondary (shear) localization within
the thinning region (failure occurs in a slant manner).
Finally, a decreasing part that governs the intensifica-
tion of the secondary (shear) localization and the asso-
ciated loss of load-carrying capacity (fracture) (see the
discussion in Cornec et al. 2003). The 2D setup was
later used in Andersen et al. (2018) to investigate the
effect of mode mixity within a specialized numerical
model that allows for combinations of mode I/II and
mode I/III. A minor change to the peak traction was
observedwhen increasing themodemixity,whereas the
relative displacement at the point of secondary (shear)
localization and the cohesive energy depend on both the
load case and the mixity ratio. The cohesive traction-
separation relations extracted from2Dplane strainGur-
son calculations have recently been compared to full 3D

simulations accounting for the crack propagation from
initiation to steady-state (see Andersen et al. 2019). A
near-perfect agreement between the 2D and 3D simula-
tion results was obtained at steady-state, cementing the
validity of the 2D approach to a rather complex ductile
fracture problem.

Random distributions of void nucleation sites within
the fracture process zone largely determine both the
fracture toughness and the roughness of the fracture
surfaces (Srivastava et al. 2014). In fact, it is easy to
imagine that randomly distributed nucleating voids,
which affect the micro-mechanics of failure, can also
trigger the transition between different fracture surface
morphologies (see Pardoen et al. 2004;Noell et al. 2018
for comprehensive reviews). For example, a substan-
tial amount of nearby-lying nucleation sites give rise
to multiple void interaction, while a few widespread
nucleation sites will link-up through the void-by-void
mechanism (Tvergaard and Hutchinson 2002). The 2D
plane strain setup considered in Nielsen and Hutchin-
son (2012) was further exploited in Tekoğlu and
Nielsen (2019) to demonstrate the transition between
fracture surface morphologies as the size and the num-
ber of void nucleation sites change. Here, by consid-
ering various realizations of a random distribution of
the nucleation sites. The fracture surface morphology
is largely tied to the type of interaction between the
void nucleation sites. Essentially, the morphology is
determined by the overall strain hardening capacity of
the plate material, taking into account the number and
size of the void nucleation sites, and not only the strain
hardening of the matrix material. Tekoğlu and Nielsen
(2019) have investigated a large spectrum of materi-
als spanning both plates with a high overall hardening
capacity (with few small nucleation sites),where cracks
predominantly propagate in a cup-cup morphology,
and plates with a low overall hardening capacity (with
many large nucleation sites) that typically display slant
crack propagation. The present work takes up the study
inTekoğlu andNielsen (2019)with the aim to reveal the
effects of introducing discrete void nucleation sites in
thin plate tearing under mode I on the cohesive energy
and peak force, and to relate the governing micro-
mechanisms to the tearing energy. The numerical
framework fromTekoğlu andNielsen (2019) is adopted
to extract cohesive zone relations for steady-state duc-
tile tearing in line with Nielsen and Hutchinson (2012).

The2Dapproximation of themode I tearing problem
is outlined in Sect. 2, along with the details on how
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the cohesive traction-separation relation is identified.
The constitutive relations and finite element framework
are presented in Sect. 3, and the results for the energy
dissipation, the peak force, and the appearance of the
traction-separation relation are given in Sect. 4. Section
5 summarizes the main findings of this study.

2 Problem formulation and cohesive zone
identification

2.1 Problem formulation

Steady-state plate tearing under far-field mode I load-
ing of a homogeneous, though porous, metal plate was
first addressedwithin a 2D plane strain setup in Nielsen
and Hutchinson (2012). Here, following the line of
argument that as plastic flow localization and thinning
in the plate cross-section takes place far ahead of the
leading crack tip (Considère-like thinning), the mate-
rial above and below the thinning region unloads. This
enforces a plane strain condition for the cross-sections
in the fracture process zone with surface normal vec-
tors along the crack growth direction (an assumption
later validated by Andersen et al. 2019) in 3D sim-
ulations. Nielsen and Hutchinson (2012) used the 2D
model setup to extract information about the peak force
at the onset of the thinning (the primary localization),
the energy going into developing the thinning and the
fracture, as well as knowledge on the onset of the (sec-
ondary) shear localization. The present study adopts a
similar 2D plane strain framework but allows for dis-
crete modeling of randomly distributed void nucleation
sites to bring out the effect of material heterogeneity.
The setup is an approximation as the tearing process
for such heterogeneous, or dual-phase like,metal plates
never settles into steady-state at the very tip. However,
the 2D model setup is expected to give a first indica-
tion of the trends for the key parameters going into
cohesive traction-separation relations which could be
obtained if the same comprehensive parameter study
was conducted in a 3D setting. Figure 1a presents a
schematic of the plate tearing process with the 2D
cross-section of the fracture process zone highlight-
ing various stages during a monotonically increasing
mode I loading ((1)–(4)). It is assumed that extensive
crackgrowthhas takenplace such that the cut-out cross-
section is located at a distance away from the crack
initiation region which holds the transient history. The

2D section has the initial width, W0, corresponding to
the plate thickness, and the total height, H0, is suffi-
ciently large to engulf the thinning region that devel-
ops in the plate. The thinning spans approximately the
region denoted by h0, and complete elastic unloading
above and below this domain takes place once the thin-
ning initiates. Throughout all of the analyses, the initial
aspect ratio of the domain is kept constant such that:
H0/W0 = 4 and h0/W0 = 2. The loading is applied
on the top and bottom edges of the 2D section. Here,
monotonically increased by prescribing boundary dis-
placements along the x2-direction tomimic the far-field
mode I loading condition.

The grey domains in Fig. 1b, located above and
below the region of interest, is taken to be composed
of a homogeneous J2 flowmaterial (to reduce the com-
putational cost), while only the fracture process zone
is enriched by discrete and randomly distributed void
nucleation sites (representing second phase particles).
Figure 1b shows one realization of the model with the
number of nucleation sites being Np = 50, while all
nucleation sites share the same size of; Rp/Le = 15.
Each nucleation site is modeled by prescribing a Gaus-
sian bell distribution of the amount of damage that
can nucleate (see Table 1 for the material parame-
ters, and Osovski et al. 2015; Morgeneyer et al. 2016;
Srivastava et al. 2017 for related studies). The nucle-
ation sites are circular in shape with an initial radius
of Rp/Le, where Le is the edge length of the ini-
tially square-shaped finite elements used in the frac-
ture process zone (see Sect. 3 for the details on the
finite element model). The damage-related microstruc-
ture is created such that no nucleation sites overlap
for Rp/Le ≤ 9 nor can they intersect the boundaries
of the cross-section (for all values of Rp/Le consid-
ered).Ahomogeneously distributed backgroundporos-
ity is moreover allowed to nucleate in the domain sur-
rounding the discrete nucleation sites (also governed
by the Gurson model, see Sect. 3) to allow the crack to
propagate between the nucleation sites. The nucleation
parameters of the background porosity is kept small
such that the crack path is not affected by the pres-
ence of the background porosity. Both types of nucle-
ating voids are governed by strain-controlled nucle-
ation (see Sect. 3). In this way, the model setup allows
the size, Rp/Le (with Rp/Le ∈ [3, 6, 9, 15, 18]), the
number, Np (with Np ∈ [10, 25, 50, 75, 100]), and
the distribution of second phase particles to enter the
prediction of the cohesive zone parameters suited for
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(a) (b)

Fig. 1 a Schematic of the plate tearing process with different
locations of the 2D plane strain cross-sections. b One realization
of a plate with Np = 50 and Rp/Le = 15. The fracture pro-
cess zone with discrete nucleation sites, highlighted in blue, has
the height of h0/W0 = 2 and the height of the total domain is

H0/W0 = 4. Prescribed boundary conditions are applied at the
top/bottom boundaries. The left upper and lower nodes are con-
strained in the x1-direction to prevent the two parts from moving
freely after separation

tearing of thin plates. Consider a 1 mm thick metal
plate and the interval of size and number of void
nucleation sites corresponds to inclusion sizes in the
range Rp = 3.75µm−22.5µm and area fraction of
0.022–7.95 %. All combinations of the damage-related
microstructure parameters are considered for three real-
izations of the random distribution of discrete nucle-
ation sites. Throughout, the plate material is assumed
to be non-porous initially before the deformation and
with the mechanical properties summarized in Table 1.

2.2 Cohesive traction–separation relation

The material separation process, here governed by the
micro-mechanics leading to failure, is typically imple-
mented into a cohesive element through a traction–
separation relation when dealing with large-scale shell
element based models. In the case of plate tearing,

Table 1 Material properties

Parameters Notation Value

Density ρ 2700 kg/m3

Young’s modulus E 70 GPa

Poisson’s ratio ν 0.3

Yield stress σ0 300 MPa

Strain hardening exponent N 0.1

Gurson fitting parameters q1, q2, q3 1.5, 1.0, 2.25

Void volume fraction that
can potentially nucleate

f nsN , f mN 8 × 10−3, 1 × 10−5

Mean strain for nucleation εnsN , εmN 1 × 10−2

Standard deviation for

mean strain snsN , smN (1/3) × 10−2

Critical void volume
fraction

f nsC , f mC 1 × 10−2

Void volume fraction at
failure

f nsF , f mF 5 × 10−2

The superscripts “ns” refers to the “void nucleation sites”, and
“m” to the “matrix” material surrounding the nucleation sites

123



www.manaraa.com

Cohesive traction–separation relations 191

the traction–separation relation holds the information
about the separation after the peak force is attained and
material softening is initiated, covering extensive thin-
ning, secondary localization, and complete loss of load-
carrying capacity (fracture). The adopted 2D model-
ing framework allows approximating this response by
extracting the force-displacement curves for the cross-
section considered. By relating the simulation response
to a tri-linear traction–separation relation, it is possible
to identify: (i) the peak force (Fpeak), i.e., the maxi-
mum force reached for the cross-section. This essen-
tially coincides with the prediction of the Considère
criterion (see the discussion in Nielsen and Hutchinson
2012). The peak force is extracted at �x2/H0 = N ,
with N being the strain hardening exponent in the
matrix material (the Considère strain) to facilitate a
comparison basis between the various material config-
urations under investigation in this study. The choice
was made due to difficulties in determining the peak
force from a nearly flat response curve subject to
minor fluctuations. (ii)The point of secondary localiza-
tion (Fsec.loc., �sec.loc.) is considered where the cross-
section shows a great loss in load-carrying capacity.
This is quantified as the point where the slope on the
normalized curves takes the value of ≤ −12 (a value
estimated to match all calculations performed), and
both the force and separation is recorded at that point.
(iii) The cohesive energy (�0) is determined as the area
underneath the force–displacement curve extracted for
the cross-section. It is worth to mention that these key
parameters unambiguously define the tri-linear cohe-
sive relation. The tri-linear relation, thereby, starts out
with a nearly vertical inlet from zero traction and zero
separation until the peak force is reached, with almost
zero separation. The inlet is followed by a linear part
that connects the peak force to the point of the sec-
ondary localization, after which the force drops to zero
at some final separation set by the cohesive energy (see
Fig. 2).

3 Material and finite element model

3.1 Gurson material model

The material in the fracture process zone of the 2D
cross-section is assumed to be governed by theGurson–

Tvergaard–Needleman (GTN) material model. The
yield surface for the GTNmaterial model is as follows:

� =
(

σe

σM

)2
+ 2q1 f

∗ cosh
(
3q2
2

σm

σM

)
− (1 + q3( f

∗)2)

where σe = √
3si j si j/2 is the effective macroscopic

von Mises stress with si j being the deviatoric part of
the Cauchy stress tensor, σM is the instantaneous yield
stress of the fully dense matrix material, σm = σkk/3
is the mean stress, f ∗ is the effective void volume frac-
tion, andq1,q2, andq3 are fitting parameters introduced
by Tvergaard (1981). The effective void volume frac-
tion, f ∗, takes into account the coalescence criterion
based on a critical void volume fraction, fC , and a final
void volume fraction, fF . When f = fC is reached,
the effective void volume fraction accelerates in the
following manner:

f ∗ =
{
f , for f ≤ fC

fC + f̄F− fC
fF− fC

( f − fC ) , for f > fC

with f̄ F = (q1+
√
q21 − q3)/q3,which reduces to f̄ F =

1/q1 when q3 = q21 .
The total void volume fraction, f , evolves due to

contributions fromnucleation andgrowthof voids: ḟ =
ḟnucl + ḟgrowth. Nucleation of voids is strain-controlled
such that ḟnucl is given as:

ḟnucl = fN

sN
√
2π

exp

⎡
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ε
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M − εN
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⎤
⎦ ε̇

pl
M

where ε
pl
M is the microscopic equivalent plastic strain

in the matrix material, εN is the microscopic mean
strain for nucleation, sN is the standard deviation, and
fN is the void volume fraction that can potentially
nucleate. The void growth contribution is controlled
by the change in plastic strains following: ḟgrowth =
(1 − f )ε̇ pl

kk .
The matrix material follows the uni-axial stress-

strain behavior:

σ =
⎧⎨
⎩
Eε for ε < ε0

σ0

(
ε
ε0

)N
for ε ≥ ε0
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Fig. 2 Cohesive energy is defined from peak force to fracture
(left figure). This is transferred to a cohesive traction–separation
relation (right figure) controlling the behavior of the cohesive

element. Here, T is traction and δ is separation. The appearance
of the relation is governed by the peak force, Fpeak, and cohesive
energy, �0

where E is the Young’s modulus, ε0 the initial yield
strain, and N the strain hardening exponent. All mate-
rial parameter values are listed in Table 1.

3.2 Finite element model

Thefinite elementmodel is generated inAbaqus/Explicit
and is schematically shown in Fig. 1b. The element type
chosen to discretize the fracture process zone is the
bilinear element type CPE4R with four nodes, reduced
integration, governed by the assumption of plane strain.
The fracture process zone in the middle of the 2D
cross-section consists of initially square-shaped ele-
ments with an edge length of Le/W0 = 1/800 in the
undeformed configuration (along the x1-direction). The
top and bottom regions, where the material is governed
by J2 flow theory, are discretized freely (i.e., by using
both quadrilateral CPE4R and three-node linear CPE3
elements; see ABAQUS (2016) for detailed element
properties). Thereby, the element size increases from
the finely meshed fracture process zone towards the
top and bottom boundaries. The finite element simula-
tions are carried out in a dynamic framework but the
loading is assumed to be quasi-static by controlling the
deformation rate and ensuring the kinetic energy to be

much lower than 10 % of the total energy in the sys-
tem. The CPU time for each simulation is less than 24
hours when performed on four central processing units
in parallel on an HP Z420 workstation.

4 Results: Cohesive zone parameters

Figure 3 depicts the force-displacement curves for a
wide span of plate materials with very different con-
figurations of the damage-related microstructure. The
displacement is the total elongation of the 2D cross-
section normalized with the height H0, and the force
is calculated as the sum of the nodal forces, along x2,
on the top boundary (

∑n
i Fi ) normalized with the ini-

tial yield stress and the initial surface area in the x1-
x3-plane (see Fig. 1). In one end of the spectrum of
materials investigated here is the case with a few small
nucleation sites (Np = 10 and Rp/Le = 3) that with-
stand severe plastic deformation even after the peak
force is attained (yielding large cohesive energy). In
contrast, a material with little to none post-peak duc-
tility, due to strong interactions between many large
nucleation sites, stands in the other end (Np = 100 and
Rp/Le = 18). Between these two extremes is a well
of configurations that display intermediate post-peak
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Fig. 3 Representative normalized force-displacement curves for
various values of number (Np) and size (Rp/Le) of void nucle-
ation sites

ductility where the micro-mechanics governing local-
ization and failure cannot be tied to a specific mecha-
nism (see discussion inTekoğlu andNielsen 2019). The
distinct shift in the force-displacement curves signals
that a strong dependency exists on the damage-related
microstructure, and the implications for the cohesive
traction–separation relation await to be revealed. A first
glimpse of the dependency is presented in Fig. 4, where
the fracture morphology is shown for the three plates
whose stress-strain curves are depicted in Fig. 3. The
fracture morphology varies significantly between the
different configurations of the size and number of the
nucleation sites. The procedure outlined in Sect. 2.2
is pursued in the following to extract knowledge on
the key parameters for the cohesive traction–separation
relation when dealing with heterogeneous nucleation
events during plate tearing.

4.1 The peak force

Figure 5 shows the peak force for a fixed size of
the nucleation sites versus the number of sites (Fig.
5a) and for a fixed number of sites versus size (Fig.
5b). It is clear that the mean peak force is essentially
unaffected by the discrete event of void nucleation,
and the largest decrease in the peak force is on the
order of 0.2 % between the various material config-
urations. The lack of variation is due to the interac-
tion of nucleation sites being tied to the plastic strain-
ing that follows from the post-localization deforma-

Fig. 4 Fracture surface morphology for three parameter sets
corresponding to the ones shown in Fig. 3: a Np = 10, Rp/Le =
3, b Np = 50, Rp/Le = 6, and c Np = 100, Rp/Le = 18

tion (thinning), while the material largely responds as
if it is homogeneous prior to the thinning (also justify-
ing the modeling assumption in Sect. 2). In fact, com-
paring the model prediction to that of the Considère
condition for a non-porous homogeneous cross-section
subject to plane strain tension, given by; Tmax/σy =
2/

√
3

(
2NE/(

√
3σy)

)N
exp−N , yields nearly coin-

ciding predictions. The difference is on the order of
0.1% (based on the average value predicted), with the
numerical model predicting higher values. This devia-
tion is assigned to small inertia effects associated with
the use of an explicit dynamic formulation. Nonethe-
less, it is seen from Fig. 5 that the mean peak force
decreases as the number of nucleation sites increases
while keeping the size of the nucleation site fixed and
that the same holds when increasing the size while
keeping the number of sites fixed. The largest decrease
in mean peak force is predicted in the cases with many
large nucleation sites. Three realizations for the random
distribution are considered for eachmicrostructure con-
figuration (giving a total of 75 simulations), allowing
both amean and a standard deviation for themodel pre-
dictions to enter into the results (see Fig. 5). Despite
the standard deviation being of substantial dispersion
for the largest nucleation sites considered, the results
in Fig. 5 clearly demonstrate statistical evidence for a
lower peak force when either increasing the number or
size of the nucleation sites, although the variation is
insignificant.

123



www.manaraa.com

194 R. G. Andersen et al.

(a)

(b)

Fig. 5 Peak force as a function of a number (Np) and b size
(Rp/Le) of void nucleation sites. The interval of confidence
shown is 3σ , with the standard deviation being σ . The Consid-
ère force for a corresponding, non-porous, homogeneous cross-
section is: FConsidère/(σy A0) = 1.452

4.2 The cohesive energy

The trend for the cohesive energy is much more pro-
nounced when compared to that of the peak force
predictions as the model shows a significant drop in
the mean energy going into material separation when
increasing either the number or size of the nucleation
sites. For example, the mean cohesive energy drops
from �0/(σyW0) ≈ 0.258 to 0.035, when increasing
the number of sites from 10 to 100, while keeping the
size constant at Rp/Le = 18 (the largest sites con-
sidered). The rather low cohesive energy predicted for
such large nucleation sites is tied to an early interac-

tion between sites which allows localization across the
entire cross-section to take place shortly after the peak
force is attained. As seen in Fig. 4c, this results in
a limited thinning of the plate. Tekoğlu and Nielsen
(2019) categorized the interaction between the individ-
ual void nucleation sites into three different mecha-
nisms: I local ±45◦ shear bands near the void nucle-
ation sites interact to form a global localization, II
new shear bands are created through “void sheeting”

where neighboring voids interact, and III neighbor-
ing void nucleation sites merge by internal necking
of the ligament connecting them (see Figs. 6 and 12
Tekoğlu and Nielsen (2019) for contour plots showing
the threemechanisms and, additionally, the discussions
in Bron et al. (2004) and Buljac et al. (2018)). The
predicted drop in the mean cohesive energy is associ-
ated with the shift from failure by mechanism II to
failure by mechanism I . The void sheeting mecha-
nism (mechanism II ) is prevailing in the case of a few
large nucleation sites, which leads to a slant fracture
at an angle lower than 45◦, whereas mechanism I
sets in when the number of nucleation sites is large,
allowing existing 45◦ local shear band that emanate
from the individual sites to coalesce and form global
localization at an angle of 45◦ across the entire plate
thickness (see Figs. 4c and 9 in Tekoğlu and Nielsen
2019). Consistent slant fracture is predicted for all real-
izations of the random distribution with large nucle-
ation sites, which, in turn, results in the rather nar-
row interval of confidence (using 3σ with σ being
the standard deviation) seen in Fig. 6a. In contrast,
the interval of confidence is somewhat larger for the
case of small nucleation sites (Rp/Le = 3). This
has to do with the fracture surface morphology being
much less well-defined and with, essentially, all of the
three mechanisms identified by Tekoğlu and Nielsen
(2019) coming into play. In these cases, the linking
of nucleation sites requires pronounced thinning of
the plate, yielding a higher mean cohesive energy due
to severe plastic deformation when the crack opens.
It is important to emphasize that for this case where
Rp/Le = 3, despite that the mean cohesive energy
displays a drop for an increasing number of nucleation
sites, the interval of confidence is too wide to form a

statistical basis for a general conclusion. In addition,
it is worth to mention that the cohesive energy can-
not be negative as indicated by the interval of confi-

dence in Fig. 6, e.g. for Rp/Le = 18. The indicated
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(a)

(b)

Fig. 6 Cohesive energy as a function of a number (Np) and b
size (Rp/Le) of void nucleation sites. The interval of confidence
shown is 3σ , with the standard deviation being σ

negative energy is merely an outcome of the statistical
analysis.

Keeping a fixed number of nucleation sites and
increasing their size (see Fig. 6b) also yield a consistent
drop in the mean cohesive energy within the parameter
interval considered. This is despite overlapping inter-
vals of confidence (using 3σ ). Thus, a plate material
with a few small nucleation sites displays the highest
mean cohesive energy, while the energy is lowest in
the case of many large sites. Recall that this shift in
the mean cohesive energy is tied strongly to the thin-
ning of the plate prior to fracture and, thus, the overall
strain hardening capacity - also discussed in Nielsen
and Hutchinson (2012) for homogeneous porous plate

materials. The change in the plate thinning is realized
by consulting Fig. 11 in Tekoğlu and Nielsen (2019).
In fact, a shift in the failure mechanism clearly occurs
when increasing the size of the nucleation site while
keeping the distribution and number of sites fixed.
Small nucleation sites give rise to severe thinning and

failure by a mixture of mechanisms I through III ,
while large sites primarily link up by mechanism I .
For an intermediate size of the nucleation sites, a mix-
ture of mechanisms I and II is obtained. In addition,
comparable energy levels are observed when consult-
ing the predicted level for the mean cohesive energy in
Fig. 6 to that of the homogeneous porous plate material
considered in Nielsen and Hutchinson (2012). A direct
comparison between the two studies, however, should
be made with care as the damage in the fracture pro-
cess zone is very different. The highest value for the
cohesive energy in Fig. 6 is predicted for the case with;
Rp/Le = 3 and Np = 10, which is slightly higher
than for the homogeneous porous material in Nielsen
and Hutchinson (2012). However, the general decrease
in energy level, when accounting for nucleation sites,
underlines that great care must be taken for plate mate-
rials that either diverges from a homogeneous initial
configuration (e.g., in thin plates) or are prone to sig-
nificant discrete nucleation events.

4.3 Secondary localization and loss of load-carrying
capacity

The displacement at the onset of the secondary localiza-
tion, where the material rapidly loses its load-carrying
capacity, is reported in Fig. 7. The displacement at this
point displays a similar dependency on the damage-
related microstructure as the cohesive energy. This is
not surprising as the area under the force-displacement
curve, which defines the cohesive energy, is strongly
related to the displacement at the secondary local-
ization. Despite the somewhat large standard devia-
tions, especially for the smallest nucleation sites, the
displacement at the onset of the secondary localiza-
tion increases for the diminishing size of the nucle-
ation sites—for all cases considered—as this leads to
higher post-peak ductility, severe diffuse thinning, and
postponed secondary localization. Essentially, smaller
particles give rise to a higher overall strain harden-
ing capacity. On the other hand, the case with many
large sites shows a low overall strain hardening capac-
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itywith secondary localization and rupture shortly after
the peak force is attained. The force level at the onset
of the secondary localization is depicted in Fig. 8 and
it is found to be much less influenced by the damage-
related microstructure. The interval of confidence is
wide for nearly all configurations, but the tendency is
that the force drops with decreasing size of the nucle-
ation sites (see Fig. 8a). In fact, the shift in post-peak
ductility with respect to changes to the damage-related
microstructure is clearly brought out in Fig. 8. There
exists a threshold on the number of sites (this is depen-
dent on the size of the nucleation sites) where the force
at the secondary localization essentially takes the value
of the peak force attained at the primary localization
set by the plate thinning. Thus, the secondary localiza-
tion occurs simultaneously with, or shortly after, the
primary localization (a related discussion on micro-
scopic versus macroscopic localization can be found
in Tekoğlu et al. 2015; Tekoğlu and Nielsen 2019).

The fairly large dispersion in the predictions for
the force at the onset of the secondary localization,
when considering different random distributions, is
highlighted by Fig. 9. Here showing the curves for
three realizations of randomly distributed nucleation
sites when Rp/Le = 3 and Np = 100. A close-up
of the load-displacement curves reveals fluctuations in
the curve at the point (automatically) identified with
the onset of the secondary localization (see also Sect.
2.2).

5 Concluding remarks

The presentwork demonstrates the connection between
the damage-related microstructure and the parameters
going into a cohesive traction–separation relation. Con-
sequently, a link is created between the underlying
micro-mechanics and the otherwise phenomenological
parameters. Plate materials with randomly distributed
discrete void nucleation sites, of various sizes and num-
bers, have been analyzed, and the main results of the
analyses are summarized below.

(i) The peak force is virtually unaffected by chang-
ing the number, size, and distribution of the dis-
crete nucleation sites (see Fig. 5). The main
effect on the peak force relates to the material
softening originating from the nucleated dam-
age. The peak force predicted for the various

(a)

(b)

Fig. 7 Strain at secondary localization as a function of a number
(Np) and b size (Rp/Le) of void nucleation sites. The interval
of confidence shown is 3σ , with the standard deviation being σ

heterogeneous materials all display low stan-
dard deviations yielding a firm statistical basis
for this conclusion. Moreover, the model pre-
dictions for the heterogeneous materials closely
agree with similar calculations for homogeneous
porous plate materials (see Nielsen and Hutchin-
son (2012), meaning that the Considère crite-
rion for plane strain tension accurately approx-
imates the peak force. Thus, accounting for
the damage-related microstructure in modeling
large-scale plate structures, e.g., using shell ele-
ments, requires no special attention regarding the
constitutive modeling of the material that sur-
rounds the cohesive zone.
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(a)

(b)

Fig. 8 Force at secondary localization as a function of a number
(Np) and b size (Rp/Le) of void nucleation sites. The interval of
confidence shown is 3σ , with the standard deviation being σ . The
Considère force for a corresponding, non-porous, homogeneous
cross-section is: FConsidère/(σy A0) = 1.452

(ii) The cohesive energy depends highly on both the
number and size of the discrete nucleation sites.
An increase in either one causes a decrease in the
mean cohesive energywhich, in turn, leads to the
reduction in the overall strain hardening capac-
ity of the plate material. Despite the partially
overlapping interval of statistical confidence, the
trends are clear from Fig. 6. The strong depen-
dency of the cohesive energy on the number and
size of the nucleation sites suggests that varia-
tions in the tearing mechanism can develop as
the crack propagates in large plates. Thus, man-

Fig. 9 Zoom in on the overall response approaching fracture
where the asterisks denote the onset of secondary localization
according to the procedure employed. Model parameter set here
is Np = 100 and Rp/Le = 3

ufacturers must ensure tight control over the size
and number of nucleation sites to achieve a plate
material with a uniform fracture surface mor-
phology resulting from large-scale plate tearing.
Along the same lines, the modeling of large-
scale plate tearing must take into account any
variation in the damage-related microstructures,
occurring along the crack path, to accurately pre-
dict failure. The standard deviation for the cohe-
sive energy displays a rather large dispersion
and, thus, an attempt to reduce this dispersion
has been made by including more realizations.
By adding two more realizations, giving a total
of five, for Rp/Le = 6 and all values of Np

did, however, not provide the desired reduction.
Three realizations for each material configura-
tion are, therefore, used throughout the present
study.

(iii) The onset of secondary localization, in terms of
the displacement, follows the trend for the cohe-
sive energy and displays a substantial drop when
increasing the number and/or size of the nucle-
ation sites (see Fig. 7). The force at the sec-
ondary localization is, on the other hand, only
slightly lower than the peak force and displays
a weak dependency on the size and number of
nucleation sites (see Fig. 8). Interestingly, there
exists a threshold on the number of sites (depend-
ing on their size) for which the secondary local-
ization coincides with, or occurs shortly after,
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the primary localization (see Fig. 8 or Tekoğlu
et al. 2015, for a related discussion). Thus, infor-
mation on the force at the secondary localiza-
tion (even an estimate) is suggested to be used
in combination with the cohesive energy when
creating the microstructure dependent traction–
separation relation in Fig. 2 for a given plate
material.

Nielsen and Hutchinson (2012) separated the cohe-
sive energy into two parts, one originating from the
diffuse thinning and the other related to the secondary
localization into shear bands. A similar distinction
between energies has not been possible for the current
setup as the point of final separation displays a sig-
nificant standard deviation (Fig. 3 indicates this large
scatter). Nonetheless, the study demonstrates that the
parameters going into the cohesive traction–separation
relation require to be tuned when the damage-related
microstructure diverges from a homogeneous configu-
ration.
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